
acmqueue | may-june 2025 1

web development

A
s Herb Sutter once famously observed in his article
The Free Lunch is Over, CPU clock speeds have
trended toward a plateau in recent years, while
the number of CPU cores per chip continues to
increase. As such, modern software reaches ever

more urgently for multicore concurrency (alongside other
strategies such as data parallelism) in order to capture the
full performance capabilities of modern hardware.

As a separate trend, more and more software is
now built for the web platform—the collection of open
standards implemented in every web browser and
underpinning the operation of every website. The web
platform offers an exceptional value proposition for
developers: a sandboxed and (mostly) uniform virtual
machine environment for application deployment that
is supported by billions of devices worldwide by default,
through their installed web browsers. The web platform is
not without its limitations, however. The browser virtual
machine can only execute code written in one of the
standardized Web languages (before WebAssembly, just
JavaScript, HTML and CSS), and such code can access only
a restricted, safe abstraction of the underlying capabilities
of the local system. Therefore, application developers

Experiments
in the web
and beyondCONRAD WATT

1 of 21 TEXT
ONLY

Concurrency in
WebAssembly

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3747201.3746173&domain=pdf&date_stamp=2025-07-03

acmqueue | may-june 2025 2

web development

must often choose between the uniformity and reach of
the web platform and the flexibility, performance, and
expressivity attainable only through native deployment.

The web platform’s constraints are logical considering
the security model of the web—untrusted code from a
website may be downloaded and executed by a visitor’s
computer without their explicit intervention, so the
capabilities of any downloaded code must be limited.
Moreover, the constraints make sense from a social
perspective—in order to maintain the uniformity of the
web platform, new features are generally standardized
only if all browser vendors agree to implement them,
creating an understandable bottleneck in the capabilities
of the web based on the priorities, resources, and technical
circumstances of these companies.

With the advent of Wasm (WebAssembly) as an extension
of the web platform, browser virtual machines now offer
a uniform, developer-facing bytecode language and
compilation target. This raises the tantalizing narrative that
developers are now free to develop their applications in
whichever programming language they like, so long as this
language can be compiled to (or otherwise executed on top
of) Wasm, in the same way that compilers might traditionally
support separate x86 and ARM instruction-set targets.

Certainly, it is true that Wasm marks an exciting new
era for developer engagement with the web platform, and
many projects have created profoundly impressive Web
applications backed by Wasm as a compilation target for
their preferred source language. Such a compilation target
must still respect the constraints of the web platform as
a whole, however. Mismatches between the interfaces

2 of 21

acmqueue | may-june 2025 3

web development

promised to programmers by source languages and the
capabilities of the underlying web platform are a constant
trap in compiling to Wasm. Even simple examples such as a C
program using the language’s native file-system API present
difficulties—for obvious reasons the web platform does not
allow its programs arbitrary access to a client’s file system,
so the behavior of this API must be carefully virtualized
during the compilation process if it is supported at all.

Often such gaps can be papered over by the compilation
toolchain somewhat automatically, without the developer
needing to know all of the details so long as their code
runs correctly end to end. This state of affairs is strained
to its limits when compiling programs for the web that
use multicore concurrency features. This article aims to
describe how concurrent programs are compiled to Wasm
today given the unique limitations that the Web operates
under with respect to multi-core concurrency support
and also to highlight some of the current discussions of
standards that are taking place around further expanding
Wasm’s concurrency capabilities.

THE STATUS QUO
What does multicore concurrency on the web platform
look like today? The capability to create a new thread of
execution on the web that can execute user-defined code
is carefully limited as it’s a powerful and security-sensitive
operation. Currently the only way to do this is through
the Web Workers API (including specialized variants such
as Service Workers and Worklets, not explicitly covered
by this article). Web Workers can be contrasted with
native OS threads in that there is a pervasive assumption

3 of 21

T
he capa-
bility to
create a
new thread
of execu-

tion on the web
that can execute
user-defined
code is carefully
limited as
it’s a powerful
and security-
sensitive
operation.

acmqueue | may-june 2025 4

web development

throughout the web platform that objects allocated in
one Worker (or the main thread) cannot be transferred by
reference to another Worker.

There are two main causes of this constraint. First,
JavaScript and DOM (Document Object model) objects are
complicated enough that it’s not possible to make their
accesses thread-safe without severely compromising
performance (e.g., by putting locks on everything).
JavaScript objects in particular have highly dynamic
representations in most browser implementations.
Second, modern garbage collectors (GCs) in web browsers
are generally built for speed, making use of a longstanding
assumption that a lot of garbage-collection work can
be safely performed thread-locally, without needing to
worry about stopping the world or following cross-Worker
references to ensure object liveness. Invalidating these
deep-rooted implementation assumptions would create
a monumental performance and security headache for
web browsers, and so they are more or less entrenched
as pervasive limitations on the capabilities of new Web
concurrency features.

These limitations mean that general shared-memory
concurrency, where multiple threads may access the
same object concurrently, is not possible as a rule, with
one major exception to be discussed here shortly. Most
communication between Workers happens through
asynchronous message passing that simply prevents the
transfer of object references by construction (either by
explicitly erroring if they are present in the message or
implicitly creating a separate copy in the other thread
rather than sharing the reference directly).

4 of 21

acmqueue | may-june 2025 5

web development

Because of this restriction, each newly created Web
Worker must allocate a fresh global context on start-up
(since it cannot share its creator’s context by reference,
which would allow concurrent access). This context must
include (at a minimum) a new JavaScript global object
specific to that Worker, and so the process of creating a
Web Worker is many times more expensive than creating
a new native thread. There are tricks that browser engines
can play to ameliorate this issue, but, in practice, if your
web code wants to create many concurrently executing
jobs, it is recommended that you create a somewhat fixed
pool of Web Workers on start-up, and then implement
load balancing and pooling of jobs among them in user
code rather than creating a new Worker for each job. The
overhead of being required to perform this management
in user space, especially layered on top of some underlying
OS scheduler that is ignorant of the workload, has not been
fully quantified (contributions welcome!).

When coding directly in JavaScript or another web-
first language, the web platform’s restrictions against
cross-thread reference sharing are exposed directly to the
programmer, so their code can be directly written with these
restrictions in mind. However, if I simply take a C program
that calls pthread_create() and attempt to compile it to
Wasm, there seems to be a mismatch. I could try to map
pthread_create() to the web platform’s new Worker()
functionality, but imagine that the C program allocates a
struct in one thread and tries to pass a pointer to that struct
as an argument of pthread_create (figure 1 shows a simple
C program that allocates a struct and then accesses the
struct in two other threads through a pointer). How can I

5 of 21

acmqueue | may-june 2025 6

web development 6 of 21

FIGURE 1: A simple C program that allocates and accesses a struct

#include <stdio.h>
#include <pthread.h>

typedef struct {
 _Atomic int bar;
} foo;

void* incr(void* myFoo) {
 ((foo*)myFoo)->bar++;
 return NULL;
}

int main() {

 foo myFoo = {0}; // how do we compile this allocation in
 WebAssembly?
 incr(&myFoo);
 printf(“%d\n”, myFoo.bar); // print 1

 // run two threads that take &myFoo as an argument and
 call incr on it
 pthread_t thread_id1, thread_id2;
 pthread_create(&thread_id1, NULL, &incr, &myFoo);
 pthread_create(&thread_id2, NULL, &incr, &myFoo);
 pthread_join(thread_id1, NULL);
 pthread_join(thread_id2, NULL);

 printf(“%d\n”, myFoo.bar); // print 3

 return 0;
}

acmqueue | may-june 2025 7

web development

faithfully map this functionality to Wasm when we seem to
lack the concept of shareable allocations?

As mentioned in the introduction of this article,
concurrent programs (including C programs using
pthreads) can in fact be compiled to Wasm. This is
because there is an exception to the general principle
that objects cannot be transferred between or accessed
across multiple Web Workers (leaving aside certain
simple immutable objects where the difference between
reference sharing and copying is more or less semantically
unobservable): the Wasm shared memory and the
analogous JavaScript SharedArrayBuffer. Both of these
objects are thin wrappers for the special allocation of a
simple integer-indexed buffer of bytes—sometimes called
the backing store for these objects—that can be allocated
in one Worker and transferred by reference to another
Worker (backing stores are not directly user-accessible,
but when one of its user-accessible wrappers is included in
a message to a Web Worker, the underlying backing store
is passed by reference and a new wrapper object for it is
allocated by the receiving Worker).

These special buffers/backing stores allow true
shared-memory concurrent access and can fit within the
previously mentioned implementation assumptions of
web browsers since they have a simple layout in memory
and cannot themselves hold references to any regular
objects—they can only hold raw byte data. This means
that their accesses can be implemented in a thread-safe
way, and the shared buffers do not need to participate
in the liveness analyses of other objects when thread-
local garbage collection is performed. One Worker

7 of 21

acmqueue | may-june 2025 8

web development

can write to a shared buffer, and another Worker can
concurrently read from it and observe this write (at
least subject to the horrifically complicated cross-core
caching/synchronization behaviors that are exposed by
every shared-memory feature1,2—both objects provide a
suite of atomic access operations to facilitate user-level
synchronization). As a brief aside, this low-level model
of concurrent memory access was of particular concern
when mitigating the notorious Spectre and Meltdown
vulnerabilities on the web, and today, as a result, shared
buffers can only be allocated by websites that enable
a security policy known as cross-origin isolation, which
restricts the use of third-party scripts.

In the context of compilation, and preserving the
source-level semantics of the original program, this
capability allows us (and in fact near-obligates us!) to
bootstrap all of the source language’s shared-memory
concurrency behavior purely from the Wasm-level shared
memory. This approach allows a feasible compilation
scheme from the program from figure 1 to a Wasm module.

Before we get into the full detail of how this scheme
works, it’s necessary to explain a little background on the
lifecycle of a Wasm module, once it has been produced by
compilation of some source code. In order to execute such
a Wasm module, the module must first itself be compiled
to machine code by the Wasm engine (e.g., a web browser
engine such as V8). Then, a process called instantiation
gathers the module’s requested imports and wraps the
generated machine code with function objects that can be
called and manipulated by host code such as JavaScript—
the result of instantiation is a user-accessible instance

8 of 21

acmqueue | may-june 2025 9

web development

object that contains these ready-for-execution function
objects, among other things.

Our compilation scheme to Wasm produces a central
module that imports a shared memory from the host.
When the main thread of figure 1 allocates myFoo,
because its pointer can be shared with other threads, the
compiled Wasm code must allocate its representation
into the imported shared memory. The address &myFoo
is represented as an integer index into the memory in
the compiled code, and likewise the function address
&incr becomes an integer index into the list of Wasm
function objects declared in the compiled code—note that
for security reasons Wasm is a “Harvard architecture”
where executable functions are only user-accessible in
the form of these function objects, which have opaque
representations and live in their own index space that is
separate from the directly user-writable byte memory.

When pthread_create(... &incr, &myFoo) is called,
we will create a new Web Worker (or request one from a
pre-allocated pool), but as one crucial complication this
Web Worker cannot access the existing Wasm instance or
its functions due to the previously mentioned restriction
that such objects cannot be shared between Workers.
Therefore, we must initialize a new instance in the freshly
created Web Worker, essentially a separate copy of the
same compiled program (as an optimization, the compiled
machine code can be cached/shared across instantiations,
but the wrapping instance objects must still be separately
allocated). To do this we must transfer the shared memory
by reference to the new Web Worker to be imported as
part of the new instantiation process for the module

9 of 21

acmqueue | may-june 2025 10

web development

performed in that Web Worker. We also message the
new Worker with two integers—the first representing the
address of the function to begin executing (&incr) once
instantiation is completed, and the second representing its
argument: the address &myFoo.

The Wasm standards and toolchain community has taken
to referring to this approach as an instance-per-thread
compilation scheme, because it relies on creating a separate
Wasm instance object representing a user-accessible view
of the compiled program in each thread. Figure 2 depicts a

main thread
execute $main of

instance 1
(call $start_new_

web_worker)

callable incr() function object
allocated here (accessible
in Wasm and JavaScript)

machine code of incr()
allocated here

another incr() function
object allocated here

another incr() function
object allocated here

myFoo
allocated

here

instance 1 of
my_module

worker A

instance 2 of
my_module

worker B

instance 3 of
my_module

machine code
of my_module
(compiled from

Wasm)

memory
backing store

FIGURE 2: Diagram of Web Workers

10 of 21

acmqueue | may-june 2025 11

web development

snapshot of the Wasm program described earlier executing
in a browser. After instantiation, and during the subsequent
execution of the compiled main() function, a chunk of the
shared memory is used to store the byte representation
of the C-allocated myFoo struct. Two Web Workers in a
pool are created with their own Wasm instances since the
instance (and constituent function objects) allocated in the
main thread cannot be transferred to the Web Workers by
reference. The Wasm implementation of pthread_create
involves signaling to an idle Web Worker that it should
execute the incr() function, as described earlier. The
diagram in figure 2 (Web Workers executing the program
shown in figure 1 when compiled to Wasm) depicts this
point in the execution where the two Web Workers have
created their separate instances that both reference the
same underlying shared memory (and as an optimization, the
compiled machine code).

THE FUTURE?
Several limitations to this approach remain, many of which
are being discussed as part of the gargantuan shared-
everything threads project that I am championing in the
Wasm standards community alongside Andrew Brown
(Intel) and Thomas Lively (Google). This umbrella project
collects a number of interrelated standards proposals of
varying complexity that are being investigated as possible
ways to expand the concurrency capabilities of Wasm and
the wider web platform. This effort also intersects with
and takes inspiration from the JavaScript structs proposal
from the JavaScript standards community, championed
by Shu-yu Guo (Google) and Roy Buckton (Microsoft); this

11 of 21

https://github.com/tc39/proposal-structs

acmqueue | may-june 2025 12

web development

proposal looks at some of the limitations from a JavaScript
perspective.

At this point I should also acknowledge the invaluable
efforts of Andreas Rossberg (independent), Luke Wagner
(Fastly), Ryan Hunt (Mozilla), and all the other members
of the web standards community who have contributed to
and participated in the development of shared-everything
threads and related proposals in other standards bodies. I
should also caution that all of the ideas discussed here are
merely proposals, and no presumption should be made that
they will be standardized in the web platform. I can only
hope to give a flavor of the currently active discussions in
the community, which I expect to inform the development
of Wasm in the years to come.

Limitation 1—limited variety of atomics
Languages such as C/C++ and Rust offer a range of
different “strengths” of different atomic operations,
which allow expert programmers to selectively weaken
the cross-thread synchronization guarantees of certain
memory accesses in exchange for improved runtime
performance. When accessing a shared memory, Wasm
and JavaScript offer only two choices of access strength
at the extreme ends of the spectrum—unordered and
sequentially consistent. While these two access strengths
are by far the most commonly used in real code, even in
languages where other options are available, expertly
written programs using other intermediate access
strengths lose out on some performance when compiled to
Wasm, since all such accesses must be compiled to Wasm’s
stronger and slower sequentially consistent accesses.

12 of 21

acmqueue | may-june 2025 13

web development

Adding some other intermediate access strengths to
Wasm, such as release-acquire, would unlock more of this
performance without requiring major structural changes
to the language. These efforts are ongoing as one of the
less onerous parts of the shared-everything threads
project.

Limitation 2—inability to share Wasm instances
As previously described, when multithreaded code is
compiled to Wasm, each Web Worker used in the compiled
program must create a separate Wasm instance (see
figure 2). As already noted, this leads to increased thread
start-up costs (mitigated by pooling of Web Workers),
but a more fundamental issue arises when attempting to
support dynamic code loading, such as when compiling a
source C program that calls dlopen to Wasm. This system
call dynamically loads new code and data into memory and
returns a bag of new pointers, including function pointers
to the loaded code that may be called as normal.

Recall the approach for compiling C function pointers to
Wasm that was previously sketched: Each thread
must keep a consistent list of loaded functions, and then
function pointers can just be compiled to integers that
index this list, which can be safely passed between threads.
If one thread executes dlopen, however, the compiled
code in Wasm must laboriously pause the execution of
every thread and update the list of loaded functions in
order to ensure that any new function pointers introduced
by dlopen behave correctly if they are used in another
thread. This bookkeeping can be done automatically by the
toolchain, but it is clearly not an ergonomic experience.

13 of 21

acmqueue | may-june 2025 14

web development

The widely-used Emscripten toolchain for Wasm offers
experimental support for this approach when compiling C
code that uses pthreads+dlopen.

To address this and related issues, discussions in the
Wasm community have focused around the feasibility of
introducing a concept of shared instances to the Wasm
language. Instead of requiring each Web Worker to keep
a separate Wasm instance and list of loaded functions,
such a capability would allow the allocation of a single
shared instance that all Web Workers point to. With this,
dynamic code loading could be implemented in Wasm
in a way that is closer to its expected behavior in native
compilation without requiring that all threads be paused.
See figure 3 for a sketch of this. If this code needs to
dynamically load a new function (e.g., through dlopen),

main thread

whenever a thread needs to
call incr(), just access the

function object allocated in
the shared instance

just one callable incr()
function object allocated here

machine code of incr()
(and myFoo) still

allocated here

instance 1 of
my_module

worker A worker B

compiled code
of my_module

memory
backing store

FIGURE 3: The support of a hypothetical shared instances feature

14 of 21

https://emscripten.org/docs/compiling/Dynamic-Linking.html#pthreads-support

acmqueue | may-june 2025 15

web development

only one shared list of functions (maintained by the
shared instance) needs to be updated (in contrast to the
current scheme shown in figure 2).

This extension, naively introduced, would violate the
core invariant of the web as previously mentioned—now
any object accessed by a function in the shared list
would be accessible by multiple threads simultaneously.
Discussions on possible designs of such an extension have
therefore relied on mechanisms that would prevent such
cross-thread–shared functions from holding references to
objects that are not thread-safe, possibly through static
restrictions enforced by Wasm’s validation algorithm.
Shared instances would still need new special handling
in implementations, but at least the effect on existing
objects in the web platform would be minimized. Several
ideas in this space are currently the subject of a lively
standards debate, taking account of the known constraints
of the Web platform and the implementation resources of
browser vendors.

Limitation 2+—inability to share JavaScript objects
Wasm programs often import capabilities from the
JavaScript host. Created Wasm instances must therefore
often hold persistent references to JavaScript functions
and other objects that will be accessed during execution.
As noted earlier, this is problematic when considering a
possible extension to shared instances—without careful
protections, it would be possible for a JavaScript function
object to be accessed through the same shared instance
in multiple threads, breaking the pervasive assumptions
made by browser implementations about the thread-(un)

15 of 21

acmqueue | may-june 2025 16

web development

safety of JavaScript objects and the safety of carrying out
thread-local garbage collections. The knee-jerk reaction
would be simply to ban any Wasm shared instance from
importing or accessing a JavaScript object, but clearly this
would severely limit the expressiveness of any compiled
Wasm program making use of such a shared instance.

It is therefore natural to ask whether the capabilities
of JavaScript could be expanded in some limited way to
create objects that are more safely shareable. There is
ongoing discussion in the JavaScript community around
the ambitious shared structs proposal, authored by Shu-
yu Guo, which would introduce exactly this capability. Of
course, the usual caveat applies that this is an early stage
proposal subject to significant debate in the standards
community.

Limitation 3—inability to share Wasm
garbage-collected structs
The discussions here have focused mostly on the
compilation of C-style languages to Wasm, which primarily
use the (shared) Wasm memory—a buffer of bytes.
Wasm has recently been extended with new support for
allocating structs and arrays that can piggyback off of a
host environment’s existing GC—on the web, this means
JavaScript’s GC. These new primitives are used to provide
enhanced support for compiling garbage-collected
languages to Wasm since they can, in principle, remove the
need for the compiled code to ship its own (likely far less
efficient) GC as part of the Wasm binary. Because these
allocations are managed by the host’s GC, they are subject
to the same limitations as other allocated objects—

16 of 21

acmqueue | may-june 2025 17

web development

namely, the inability to share references to the allocations
between threads/Web Workers. Compilation of a source
language such as Java to Wasm must therefore disallow
the use of source-level concurrency features (or mimic
their behavior with a single-threaded simulation) if GC
structs are used in the compiled code, since there is no way
to faithfully support Java’s much more permissive cross-
thread reference-sharing behavior.

To address this issue, the Wasm standards community
is discussing the feasibility of shared GC structs, which
could be safely shared by reference across Web Workers.
This capability would essentially be a Wasm-level view
of the ongoing and closely related JavaScript shared
structs proposal. As noted in the previous limitation,
such shareable objects, if standardized, would need to
be prevented from accidentally introducing the ability to
concurrently access ordinary JavaScript objects through
transitive references.

Limitation 4—lack of lightweight threads
Web Workers carry some overhead because of their need
to allocate a separate JavaScript context on start-up. It
is tempting to ask whether this overhead is necessary
in the context of supporting compilation to Wasm, and
whether a more lightweight thread creation primitive
would be appropriate. Wasm standards-body discussions
around this concept have focused on the performance of
the existing Web Worker pooling compilation strategy and
the significant engagement with the wider Web standards
ecosystem that would be necessary to pursue such a new
feature. It has also been observed that generated Wasm

17 of 21

https://github.com/tc39/proposal-structs
https://github.com/tc39/proposal-structs

acmqueue | may-june 2025 18

web development

programs need to call out to the host (e.g., JavaScript)
surprisingly often during execution, and therefore the
utility of a lightweight thread without a JavaScript context
(where such calls would not be possible) might be limited.

BEYOND THE WEB
While this article has focused mainly on the limitations
and future of WebAssembly concurrency, it is worth
emphasising that thanks to the existing efforts of the
many web platform contributors, plenty of use cases for
concurrency on the web already work today. Tools like
Emscripten, where applicable, allow the arcane process of
Web Worker organization and communication to be
treated (mostly) as a black box, with high-profile projects
such as Google Earth using this approach to bring vast
“native” codebases to the Web.

It’s also worth emphasizing that shared-everything
threads is not the only standards project seeking to
enhance WebAssembly’s capabilities. Two somewhat-
related recent extensions especially worth highlighting,
SIMD instructions and JavaScript Promise Integration
(JSPI), introduce enhanced support for data parallelism
and asynchronous host interaction respectively,
while the early stage Stack Switching proposal hopes
to extend WebAssembly with core primitives for
asynchronous computation. These efforts (along with
the aforementioned shared-everything threads umbrella
proposal and many others) show the best of the web
standards community, with many different participants
actively contributing towards making WebAssembly as
powerful and expressive as it possibly can be, all without

18 of 21

acmqueue | may-june 2025 19

web development

compromising the open, consensus-driven, and backwards-
compatible nature of the Web platform.

The Web platform has proven to be popular enough
that it is often the preferred abstraction even for other
use cases such as server-side and cloud computation
— consider for example the ubiquity of server-side
JavaScript. In principle these environments can offer
more tailored development experiences according to their
unique priorities and technical constraints, but in practice
the rigorous security model of the Web platform offers a
lot “out of the box” to these environments, and economies
of scale around Web development expertise mean that
it just makes sense to focus efforts around providing a
Web-like development environment rather than something
more bespoke. WebAssembly specifically has attracted
interest from even more varied environments related
to embedded systems and blockchain. While all of these
environments can offer limited additional capabilities to
executing programs, such as file system access, on top of
the base capabilities of the Web platform, they are still
incidentally affected by several of its constraints — there
are many benefits that come from adopting a widely used
and implemented standard, but this is the trade-off! Many
of the limitations discussed above (especially shared
instances) will require core WebAssembly language
extensions to address, which must be agreed among all
stakeholders, even though many of these platforms are
not subject to the same technical constraints as Web
browsers.

To end on a positive note, it may be that these “off-
Web” platforms, because they don’t suffer from the same

19 of 21

acmqueue | may-june 2025 20

web development

technical constraints as Web browsers, will become
fruitful environments for experimentation with new
WebAssembly concurrency features that would be too
onerous for Web browsers to speculatively prototype.
This in turn can create evidence and precedent that
may be used to inform the standards process. Seeing
the energy and creativity that so many are bringing to
the Web standards community on this topic leaves me
optimistic about the future of WebAssembly’s concurrency
capabilities, and I look forward to seeing how the efforts of
everyone involved will pay off over the coming years.

References
1. �Watt, C., Pulte, C., Podkopaev, A., Barbier, G., Dolan,

S., Flur, S., Pichon-Pharabod, J., Guo, S.-y. 2020.
Repairing and mechanizing the JavaScript relaxed
memory model. Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and
Implementation, 346–361; https://dl.acm.org/doi/
abs/10.1145/3385412.3385973.

2. �Watt, C., Rossberg, A., Pichon-Pharabod, J. 2019.
Weakening WebAssembly. Proceedings of the ACM on
Programming Languages 3 (OOPSLA), Article 133, 1–28;
https://dl.acm.org/doi/10.1145/3360559.

Conrad Watt is a co-chair of the W3C WebAssembly
Community Group, the main industrial decision-making body
for the language. He is also an assistant professor at Nanyang
Technological University, Singapore. His work focuses on the
definition of WebAssembly’s shared-memory concurrency

20 of 21

https://dl.acm.org/doi/abs/10.1145/3385412.3385973
https://dl.acm.org/doi/abs/10.1145/3385412.3385973
https://dl.acm.org/doi/10.1145/3360559

acmqueue | may-june 2025 21

web development

model, and more broadly on the machine-assisted verification
of WebAssembly’s language design and related artifacts.
He obtained his Ph.D. from the University of Cambridge,
where he also spent three years as a Research Fellow of
Peterhouse. His doctoral dissertation on formal verification of
WebAssembly was awarded the EAPLS (European Association
for Programming Languages and Systems) Best Dissertation
Award 2021 and an ACM Doctoral Dissertation Award
Honorable Mention.
Copyright © 2025 held by owner/author. Publication rights licensed to ACM.

21 of 21

